Register to receive the LiDAR MAG Newsletter  



remove subscribe

LiDAR Magazine Today


follow us on Twitter 

Sponsored By

TAS Lidar Content
TAS Content
Meet the Authors
Check out our fine lineup of writers. Each an expert in his or her field.
Sponsored By

Partner Sites

American Surveyor







Spatial Media LLC properties




LinkedIn Group
facebook group

Home   LiDARmag     

In This Issue
• Achievements  • Awards  • GeoTech Insider  • Future Vision  • Alaska  • UAV Integration  • Trail Blazers  • Rail to Road  • Static LiDAR  • DIY Surveys  • Drone Mapping
Articles   View Cover    Click HERE for the PageFlip full version of the magazine.
Global Mapper and LiDAR Module SDK v19.1 Now Available with New 3D Mesh Generation Capabilities
Col-East Inventories Salt Piles from the Air Each Winter in Preparation for Snowy Weather
Teledyne CARIS and Teledyne Optech Bring Bathymetric Solutions to the Joint Canadian Hydrographic and Surveyor’s Conference
Orbit GT Releases 3D Mapping Feature Extraction Pro v18
SimActive Launches Free Data Processing Service
New bMS3D-360: The First Backpack Mobile Scanning System Including Panoramic Camera
Frontier Precision Announces Acquisition of Geospatial Assets And Business of Seattle's Geoline, Inc.
VRMesh v10.0 Released with a New Construction Module
RIEGL to Exhibit at 2018 Esri Federal GIS Conference
Trimble Announces Call for Speakers for its 2018 Dimensions International User Conference
FARO Introduces BuildIT Construction Software Platform for AEC Professionals
Quantum Spatial Awarded $1.5 Million Illinois Tollway Contract for Aerial Mapping Services
Dr. Dave Maune Presented with Outstanding Personal Achievement Award in Lidar
Terrametrix Acquired by TREKK Design Group
DRONE VOLT Deployed in Germany Thanks to a Powerful Partnership
2G Robotics Launches New Lighting Solution at Oceanology International 2018
Teledyne CARIS and Teledyne Optech to Showcase Marine Mapping Solutions at Oceanology International
Wingtra Sets a New Benchmark in Drone Photogrammetry
GEO Business Expands for 2018 - Registration Now Open
Fugro Leads the Marine Survey Industry in Support of Global Initiative Seabed 2030
GeoSLAM to Host Talk on Embracing the Future at BIM Show Live
Topcon Acquires ClearEdge3D, a Technology Leader in 3D Modeling and Construction Verification Software
GeoSLAM to Demo Time & Cost Saving 3D Mobile Laser Scanners for Construction Applications at 2018 AGC Convention
TerraGo Launches New GXP InForm Application for BAE Systems’ GXP Xplorer
Journey Through History - CyArk Brings Accurate 3D Immersive Data to Life in Virtual Reality
Solv3D to Exhibit at Western Regional Survey Conference
Satellite Derived Bathymetry from TCarta Plays Key Role in Aquaculture Siting Project
Global Mapper v19.1 Now Available with a New Multivariate Query Tool and 3D Profile Line Exporting
NSPS Commends Congressional Introduction of the IMAGES Act, H.R. 4905
National Gendarmerie Conducts Post-Hurricane Missions with SimActive
Evaluation of Structure from Motion (SfM) in Compact, Long Hallways Print E-mail
Written by Jonathan D. Burnett, Richard Gabriel, Michael J. Olsen, Michael G. Wing   
Saturday, 12 April 2014

A 1.948Mb PDF of this article as it appeared in the magazine—complete with images—is available by clicking HERE

Structure from Motion (SfM) is an emerging technology which can generate 3D point clouds from a series of overlapping 2D images. Research and commercial interests in SfM technology are due to the minimal cost associated with 3D cloud generation from a personal computer and a consumer-grade camera. Competing technologies such as LIDAR have a high barrier to data acquisition due to the expense of calibrated sensors, knowledgeable technicians and processing software. However, LIDAR systems are more robustly calibrated and have other capabilities such as full-waveform diagnostics, multiple returns, and intensity measurements.

While SfM has the potential for rapid 3D data acquisition and modeling, it is important to note that for quality results, it is not simply a matter of snapping a series of pictures. Significant overlap is required and care must be taken to ensure that the scene is adequately covered.

To this end, the purpose of the study is to expand the body of knowledge regarding the strengths and limitations of SfM while simultaneously contrasting open-source SfM software performance to a commercial solution. We intentionally chose a challenging environment (the basement of Peavy Hall at Oregon State University, Corvallis, OR) to compare the geometric accuracy of SfM to LIDAR.

There are several key features of this basement that present a challenge to SfM algorithms. (1) The halls are too narrow for the traditional hierarchical photo sampling regime, in turn complicating the photo pairing. (2) The walls are the same color with a repeating texture pattern resulting from cinder block construction making unique feature detection difficult. (3) Hallways intersect at 90 degrees, which results in very few images from which to draw key points at this transition.

Equipment and Software
The equipment used in the study includes a tripod mounted FARO Focus 3D laser scanner and a Canon S100 point-and-shoot camera. We utilized FARO Scene ver. 4.8 for registration of the LIDAR scans and SfM processing occurred in both Visual SFM (opensource) and Agisoft's PhotoScan (ver. 0.9). Model rendering and evaluation was completed in Leica Cyclone ver. 8.0.

Field Sampling
Fifty-four black and white pattern targets were placed on the walls of the Peavy Hall basement two to four meters apart. Targets at corners and ends of hallways were more numerous and placed semi-randomly to aid in the transition. The targets were both used for the registration of LIDAR scans as well as comparing the fit quality between the SfM and LIDAR derived point clouds.

Twenty-one scans were taken using the LIDAR to ensure adequate coverage of the four hallways. LIDAR horizontal angular sampling delta was 0.0360°. We took 700 images of the basement hallways with the Canon camera. Orthogonal images of the walls (on both sides) were taken every 0.5m, and images looking down the hallways were taken every 1m. The camera was set to automatic mode which controls autofocus, white balance, aperture and shutter speed. Output images were 3000 x 4000 pixels and JPEG compression was activated.

Data Processing
Initial LIDAR registration was performed using FARO Scene. The software automatically identified black and white targets and performed the registration to combine the scans. The LIDAR point cloud registered together with an overall RMS of 0.002 m. Figure 1 shows the resulting point cloud and model of the Peavy Hall basement floor plan. Image processing utilized the commercial solution, Agisoft Photoscan, and a combination of open-source programs bundled in VisualSfM (VSFM). Targets were identified in the LIDAR point cloud within Leica Cyclone and local coordinates were exported to facilitate seven-way transformation of SfM models (translation, rotation and scale) in their respective software packages.

SfM software settings were adjusted after initial testing with the photo dataset. In the Agisoft Photoscan "preferences menu" alignment accuracy , was set to `high' to ensure the best possible feature matching between images. Depth filtering was set to `moderate' during sparse point cloud computation to prevent over filtering. Dense point cloud outputs utilized the `low' density feature because `high' produced point clouds and file sizes that are unwieldy for a project of this scope.

Initial testing with VSFM revealed limitations using the automated pairwise matching routine; instead the four photo sequential matching routine was used because it scans for feature matches between a selected photo and the next four photos before moving to the next photo in the sequence.

In both software packages, the SfM workflow was nearly identical producing similar sparse cloud visualizations. A complete explanation of how SfM produces point clouds is found in Turner et al. (2010) and Lowe (2004). Due to the limitations described below, only the interior walls of the four hallways were modeled in SfM. After modeling, targets were marked on each wall then referenced and transformed to the local coordinate system established by the LIDAR scans.

Limitations of SfM Software
Simply pushing 700 images through SfM software and expecting 3D model of the four hallways proved to be a lofty goal. The complete dataset was too complex for either SfM program to interpret and the SIFT routine took 53 hours in Photoscan. Processing times in VSFM were not recorded but were substantially reduced relative to Photoscan due to the use of a sequential matching routine. The initial result was a model with no discernible structure.

Expectations were reduced, and models of individual hallways were attempted. This reduced model also proved difficult for the SfM packages we tested and took more than three hours. Photoscan performed significantly better than VSFM, producing an incomplete but coherent model with two parallel hallway walls.

The most likely explanation was the homogeneity of the wall surface. Homogeneous surface without distinct features is a known perturbation to the SfM algorithms (Dandois and Ellis 2010). We further reduced our testing objective to independently model the four interior hallway walls using 217 of the 700 photos. The result was the best balance between manual intervention, processing time and the production of comparable models.

Models produced by PhotoScan were nearly complete for each hallway and processing took less than one hour apiece. Models produced by VSFM were significantly lower in quality, especially in the north and east hallway where the similarity between images was high due to scene heterogeneity (Figure 2). One intriguing contrast between the two modeling programs is that VSFM seems to have a bias for detecting the mortar joints in the brick wall. Both models suffered from the effects of error propagation as evidenced by the curvature in Figure 2. Curvature is partially corrected by transformation to a local coordinate system (not shown).

Performance Comparison
Point Density: A comparison of point densities from both sparse and dense clouds revealed significant differences between software packages (Table 1). For example, both packages modeled fewer points in the east hallway than the west, although the west hallway is the same length. This disparity is due to the east hallway interior wall being bare for half of its traverse, whereas the west hallway contained varying structure in the form of wooden baseboards down its length (Figure 2).

Photoscan modeled the full length of the north hallway, but point density reduces halfway down where the wooden baseboards stop. Similarly, VSFM cuts off the north hallway after the base boards terminate, resulting in a shortened model.

Accuracy: A seven way transformation was conducted by referencing four to five targets on each modeled wall to the LIDAR coordinate system within the respective modeling packages. The resulting RMS error of the SfM target locations relative to LIDAR are presented in Table 1. Photoscan consistently produced better fits than VSFM. Insufficient targets were visible in the point cloud for the east hallway interior wall model produced by VSFM so the RMS error could not be accurately computed. The North hallway RMS error for VSFM is high for similar reasons. Although a larger expanse of the wall was modeled, the image sequence was not reproduced properly, resulting in out-of-place control points.

As found in a current study (Raugust and Olsen--In Preparation), SfM has a seemingly natural niche augmenting LIDAR models due to its ability to fill in gaps in less-dense LIDAR clouds for improved efficiency and cost. Figure 3 shows a rendered sample from the south wall of the LIDAR cloud and both SfM models and the comparison demonstrates the potential quality gain that could be realized by augmenting LIDAR with SfM. PhotoScan would have been capable of producing an even clearer reproduction; however, we experienced hardware limitations handling the highly dense output (over 150 million points) for the south wall.

In this evaluation, it is important to consider that SfM and associated software algorithms are experimental, developing technologies so results can vary significantly between datasets and packages used.

The resulting accuracy of our VSFM models was unimpressive but PhotoScan performed admirably enough to warrant further inquiry regarding optimal application scenarios. Additional testing would be required to assess the accuracy to cost per pixel ratio between LIDAR and SfM.

However, 0.5 to 1 m RMS errors are unacceptable for most engineering applications considering the distances in the study were only 20­40 meters in length. It is very likely that both VSFM and PhotoScan results could be improved through manual interventions that include rigorous point filtering and manual photo matching; however, more intervention means more cost in time and training.

Despite the increased popularity of using SfM in terrestrial and indoor applications, our study highlighted a few limitations of SfM technology in indoor environments. The low and variable accuracy compared to LIDAR and the wide variability of quality between SfM software suggests that it is still immature technology. However, just like LIDAR, SfM is ever-evolving and will no doubt continue to improve in the years to come.

We thank Leica Geosystems for providing licenses for the use of Cyclone v8.0 software for this study and in the 3D laser scanning courses at Oregon State University. We also, extend thanks to Agisoft for providing an academic license of Photoscan to Oregon State University.

Dandois, Jonathan P., and Erle C. Ellis. "Remote Sensing of Vegetation Structure using Computer Vision." Remote Sensing 2, no. 4 (2010): 1157-1176.
Lowe, David G. "Distinctive image features from scale-invariant keypoints." International Journal of Computer Vision 60, no. 2 (2004): 91-110.
Turner, Darren, Arko Lucieer, and Christopher Watson. "An Automated Technique for Generating Georectified Mosaics from Ultrahigh Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds." Remote Sensing 4, no. 5 (2012): 1392-1410.

Jonathan Burnett is a graduate student at Oregon State University's College of Forestry Department of Forest Engineering, Resources and Management.
Richard Gabriel is a graduate student at Oregon State University's College of Forestry Department of Forest Engineering, Resources Management.
Michael J. Olsen is the Inaugural Eric HI and Janice Hoffman Faculty Scholar in the Geomatics program in the School of Civil and Construction Engineering at Oregon State University.
Michael Wing is an assistant professor at Oregon State University's College of Forestry Department of Forest Engineering, Resources Management.

A 1.948Mb PDF of this article as it appeared in the magazine—complete with images—is available by clicking HERE

< Prev   Next >

Thought Leader: Deploy the Drones!
Chances are you either have a drone or know of a firm deploying them. For two years running, the single largest purchasing intent of LIDAR Magazine readers has been UAS/UAV! Unmanned systems are fast becoming the "sea change" tech of this era--we've highlighted a wide variety of ....
Read the Article
P and Pixels 
Points & Pixels
High Eye Aerial Imaging Acquisition by Alta Vista Ventures Enhances UAV Mapping Opportunities ... CyArk and FARO® announce partnership for use of 3D technology to record heritage at risk ...
Read the Article
Hugh McFall 
How Drones Make Topographic Surveys 6X Faster
Headquartered in Gainesville, Texas, All American Surveying (AAS) is a full-service survey firm run by Jake and JT Thompson. They were recently contracted with all of the survey work for a 90-acre residential development ....
Read the Article
Erik Dahlberg 
Rising Performance
Civil aviation is an outlier. It's among the few industries where tight government regulations are widely accepted--and with good reason. The aviation industry's exceptional record of safety and efficiency comes as a direct result of tightly defined and consistent regulations for ....
Read the Article
Larry Trojak 
Bringing The Goods: Mobile Scanning an Integral Component
When Jim Smith, Jerrad Burns and Charlie Patton left the Memphis division of a major construction company in 2015, they took with them the knowledge of how to get even the most complex jobs done and what equipment could best serve them in making that happen. So ....
Read the Article
Jobe and Letham 
GIS Services are on the Cutting Edge with UAV Collected Imagery
Our GIS mapping services division of the company has been quite active with UAV technology over the last year. We've turned to cutting edge hardware and software solutions to take to the sky and support some of our existing clients (and new ones) with imagery & analysis ....
Read the Article
Sanchit Agarwal 
How Maps Are Making Us Smarter
The evolution of aerial maps is, in many respects, a story of the development of technology. It's also a narrative about human ambition: maps have always been important aids in making key decisions about commercial, military, and imperial goals. Once rare artifacts, they ....
Read the Article
Mitch Caya 
Whole Trees
The benefit of a low-cost, lightweight sensor like the Optech Maverick is its flexibility. The Maverick can profitably handle small projects while more expensive sensors usually stick to large-scale surveys. These smaller jobs are often ....
Read the Article
Matt Wade 
Francois Gervaix Discusses senseFly's New Linear Mapping Release
At the AUVSI Xponential conference in Dallas, senseFly unveiled a new eBee Plus platform enhancement designed to simplify corridor mapping. The company's project lead, Francois Gervaix, explores why documenting linear assets is so challenging and how senseFly Corridor addresses ....
Read the Article
Lewis Graham 
Random Points: Any Bad Points in There?
Some of you reading LIDAR Magazine this month are recipients of airborne LIDAR data, not producers. Rather than being in the thick of the sausage making acquisition and processing chain, you are receiving the data as the end use organization. What should you do? We are the creators of ....
Read the Article



Share this page with your favorite social networks! 


LiDARmag Exclusive Online-only Article ticker
Featured LiDAR MAG Events
List Your Event Here
contact LiDAR


VirtualGrid Intros
VRMesh v10.0

press [at] lidarmag.com
Online Internet Content


White Papers

post a job
Reach our audience of Professional land surveyors and Geo-Technology professionals with your career ad. Feel free to contact us if you need additional information.

News Feeds

Subscribe to LiDAR MAG updates via friendfeed

Need Help? See this RSS Tutorial

©Spatial Media LLC - All rights reserved / Privacy Statement
Spatial Media LLC
7820B Wormans Mill Road, #236
Frederick MD 21701
301-695-1538 - fax