Register to receive the LiDAR MAG Newsletter  



remove subscribe

LiDAR Magazine Today


follow us on Twitter 

Sponsored By

TAS Lidar Content
TAS Content
Meet the Authors
Check out our fine lineup of writers. Each an expert in his or her field.
Sponsored By

Partner Sites

American Surveyor







Spatial Media LLC properties




LinkedIn Group
facebook group

Home   LiDARmag     

In This Issue
• Understanding  • Points & Pixels  • Industrial Plants  • British Columbia  • Oil and Natural Gas  • Juniper Unmanned  • Geometric Accuracy  • Hydroelectric  • NEEA  • Root Cause  • Right Target
Articles   View Cover    Click HERE for the PageFlip full version of the magazine.
INTERGEO 2017 | Smart Cartography : How Old-Fashioned Navigation Aids Have Been Transformed Into Today’s Smart Maps
East View Geospatial Announces Training Data Library for Geospatial Machine Learning
GEO Business 2017 Unmissable Conference Line Up
FARO Introduces PointSense 18.0 Suite for Construction and Architecture
VRMesh V9.4 Adds More Feature Extraction Tools
3D Laser Mapping Mines Good Fortunes in Africa
Viametris Introduced New Mobile Scanning System vMS3D for Vehicles
Trumbull Unmanned Using SimActive for Emergency Response
Pointfuse Point Cloud Software Transforms Design of Construction in London
High Eye Aerial Imaging Acquired by Alta Vista Ventures
Viametris Introduces New Mobile Scanning System vMS3D for Vehicles
RIEGL to Exhibit and Present at SPAR 3D Expo & Conference
SPAR 3D Expo & Conference Announces Live Demonstrations at Event
Commercial UAV Expo Releases a Series of Free Reports Assessing the Outlook for the Commercial Drone Market in 2017
Woolpert PRS Leader to Head Council on ASPRS Board
PrecisionPoint Hires sUAS Pilot to Enhance and Expand 3D Reality Capture Services
From The Editor: A Better Understanding
Points & Pixels
16 Tips to Enhance the Speed and Quality of Your Next Industrial Scanning & Modeling Project
A Force to be Reckoned With—Laser Scanner Takes British Columbia Engineering Firm to a Whole New Level
Using LiDAR as an Oil and Natural Gas Exploration Tool
The Effectiveness of Drone-Based LiDAR
What Drives Geometric Accuracy, a Provider's Perspective--Boring?
Laser Scanning Interior Vertical-Shaft Turbine in a Hydroelectric Power Plant
National Enhanced Elevation Assessment (NEEA)—Part 3: The Cost-Benefit Analysis Process
Random Points: Root Cause Analysis
The Business of Laser Scanning: The Right Target for Growth
TCarta Marine, DHI and DigitalGlobe to Unveil Off-the-Shelf Bathymetric Data Portal at UK Ocean Business 17
uGRIDD Releases Scan2Map
Introducing Polaris — Next-Generation Terrestrial Laser Scanner
Multi-wave LiDAR for Habitat Restoration in Terra Ceia, Florida Print E-mail
Written by Alvan Karlin and James F. Owens   
Saturday, 12 April 2014

A 1.899Mb PDF of this article as it appeared in the magazine—complete with images—is available by clicking HERE

The Restoration Project
The Surface Water Improvement and Management (SWIM) Act, authorized by the Florida Legislature in 1987, directs the Southwest Florida Water Management District (SWFWMD) and the four water management districts in Florida to protect, restore, and maintain Florida's highly threatened surface water bodies. In conjunction with the Lands Acquisitions for Conservation or Recreation Act, popularly known as "Florida Forever Act", in 2003, the SWFWMD SWIM Section purchased a 287-acre tract, known at the "Huber Tract" located in Terra Ceia Bay, a portion of the Tampa Bay Estuarine Ecosystem, for habitat restoration.

Historically, in the 1940's, the Huber Tract was ditched, drained, and put into commercial agriculture; this land use continued until the late 1990's. In the early 2000's, the private owner intended to develop the tract for residential housing, but with the housing market decline, the parcel became available to the SWFWMD. Ecologically classified as a "low-elevation upland" and with access to Terra Ceia Bay, the Huber Tract is similar to several nearby tracts of land where the SWFWMD has conducted habitat restoration and/or habitat creation projects. The SWFWMD's intent for the Huber Tract is to create a braided- tidal creek coastal wetland to resemble an earlier project at Little Cockroach Bay (see Figure 1).

Obtaining accurate topography of the Huber Tract was the first priority for the engineering design phase of the habitat restoration. During a site visit in early 2013, we recognized that there were several challenges to obtaining the elevation data, particularly if it was to be accomplished by conventional, on-the-ground, survey methods.

First, by 2013, Brazilian Pepper tree (Schinus terebinthifolius), an aggressive invasive tree that produces dense canopy which shades out most other plants, had invaded the uplands on the property. This, along with black mangrove (Avicenna germinans) which also produces dense canopy in the salt marsh areas, made much of the tract impenetrable or at least very time and labor intensive for ground survey. Secondly, the historic ditching performed on the property with subsequent silting in, made it hazardous for ground-level survey. Finally, the restoration would require hydrographic survey into Terra Ceia Bay to determine design elevations to insure proper water flow off of the restored parcel. These three challenges, combined with limited funding, made it necessary to find alternative means to obtain the topographic survey.

Given the above challenges to obtaining topographic data for the Huber Tract, we prioritized our goals as follows: (1) to obtain topographic data of sufficient accuracy for the restoration design, (2) to identify and map the ditches, and (3) collect bathymetric data extending 500 linear feet into Terra Ceia Bay.

Recent topographic mapping projects conducted by SWFWMD have led us to use a two-stage approach. First, we use airborne LiDAR to construct the basic Digital Terrain Model (DTM) to be used for the project. Then, in specific areas where the DTM requires additional detail, we supplement the DTM, as needed, with ground-survey. This combination has proven to be both time- and cost-effective. Based on the above mentioned challenges, this approach was chosen for the Terra Ceia restoration project.

Using Lidar Technology
We contacted Aerial Cartographics of America (ACA, Orlando, FL) and Riegl USA to discuss using a multi-wave LiDAR approach to obtaining both the terrestrial and bathymetric elevations required for the Huber Tract restoration. Following an on-site planning meeting, we determined that a combination of two approaches would be used. We decided to synchronize the LiDAR data collection to a local low tidal condition, so on 30 October 2013, LiDAR data were collected between 1544-1644 EST using a Riegl LMS Q680i (1550 nm: infrared) sensor and, on 4 November, LiDAR data were collected between 1426 ­ 1526 EST with a Riegl LMS VQ-820-G (532 nm: green) sensor over the Huber Tract.

Our first challenge was to determine the fundamental vertical (FVA) and supplemental vertical (SVA) accuracies of the LiDAR data. We used the highaccuracy Florida Permanent Reference Network (FPRN) and Leica CS-15/ GS-15 GNSS receivers to determine precise ground elevations at over 90 Ground Check Points (GCPs) on and around the Huber Tract. For vertical accuracy assessments, we defined three classes of vegetation for supplemental vertical accuracy (SVA) determination, based on the vegetation structure as; (1) low grasses, 4" ­ 12" tall, (2) high grasses, 12" ­ 60" tall, and (3) dense vegetation, Brazilian pepper tree, mangrove, etc. making certain that at least 20 GCPs were measured for each vegetation class. Root Mean Square Error of Z (elevation; RMSEz) was computed as per the National Standard for Spatial Data Accuracy.

Target accuracies for this restoration design were +/- 0.3' and +/- 0.6' for the FVA and SVA, respectively for the terrestrial LiDAR elevations and +/0.6' for the bathymetry. Target nominal point densities were 2 ­ 4 points per square meter. Table 1 shows some of the mission parameters, and the computed FVA and SVA accuracies. Both sensors exceeded the target nominal point spacing and the "tested-for" accuracies of both sensors met the FVA and SVA targets. We noticed that while the SVAs in all cases, for both sensors, met the target SVAs, those for the Q680i were, on average, 30% better than those for the VQ-820-G over the terrestrial portion of the project. The differences between the sensors was most clearly seen when we looked at profile views of the point clouds (Figure 2).

In Figure 2, where the VQ-820-G points are colored green, and the Q680i points are rendered in pink, it is clear that the VQ-820-G points are more densely represented at higher elevations in the vegetation while more of the Q680i pulses are reaching the ground. We observed this pattern through each of the vegetation classes, although it is most obvious in the high grasses and shrub class. We suspect that the combination of the plant structure and chemical composition interacts with the narrow illumination pattern of the VQ-820-G to prevent much of the energy from reaching the ground. While this general pattern was true in the low grass and dense vegetation, differences in vegetation structure may have lead to more of the energy reaching the ground and hence, lower RMSEz values in those habitats.

As a result of tidal action over the years, many of the original ditches on the property, used for drainage and mosquito control, had silted-in to various degrees. However, some of the deeper ditches still retain water and some maintain moderate flow rates. These ditches were clearly delineated in the point cloud developed from both sensors, with the VQ-820-G defining the bottom of the ditches. We used the point cloud from the VQ-820-G sensor to develop ditch-center breaklines to represent those ditches in the Digital Terrain Model.

Finally, with respect to the near-shore bathymetry required for the restoration, no Q680i pulses were returned from beneath the water column. In fact, we used the returns from the Q680i to help define the water surface to compute the refraction index for the VQ-620-G pulses that did reach the sand bottom (Figure 3.) Using this technique, the VQ-820-G pulses reaching the bottom of the water column clearly delineated sandy bottom, oyster bars, and other hard-bottom features in the 500-linear foot near-shore project area.

The goal of this project was to construct an accurate topographic surface, and ultimately, a Digital Terrain Model, that would be used for the engineering design for the restoration/habitat creation on the Huber Tract. For the cut-and-fill calculations necessary for the engineering design, (1) vertical accuracies in the uplands needed to be a maximum +/- 0.3' (RMSEz), (2) the ditches needed to be clearly defined such that they can be filled or re-routed, and (3) the near-shore bathymetry needed to be determined.

For this final product, we used the data from both the VQ-820-G and the Q680i sensors. We constructed a hybrid DTM using the data from the Q680i for the upland and densely vegetated portions of the project area, and the data from the VQ-820-G to help define the ditches and the nearshore bathymetry. The combination of the two sensors in this multi-wave LiDAR project produced the required DTM for the habitat restoration design.

Authors Note: This project was a collaboration between the Southwest Florida Water Management District, Riegl USA, and Aerial Cartographics of America. We thank David Ledgerwood & Edward Beute (ACA) and James Van Rens and Andres Vargas (Riegl USA) for their numerous and generous contributions to this project.

Al Karlin, Ph.D., GISP is a Senior GIS Scientist with the Southwest Florida Water Management District. He is responsible for all aspects LiDAR acquisition, QC, analysis and distribution for the District.
Jim Owens, PSM, is the Land Survey Supervisor for the Southwest Florida Water Management District. He manages the District land survey effort and is responsible for all aspects of GPS and topographic survey.

A 1.899Mb PDF of this article as it appeared in the magazine—complete with images—is available by clicking HERE

< Prev   Next >

From the Editor: A Glance Back and Look Ahead to 2017!
Welcome to the 2017 January/February edition of LiDAR Magazine. As the first issue of 2017, it's a great time to look back over the year that was and take a peak ahead to what the coming year has in store for the LiDAR, mapping and geospatial business. 2016 was a very good year for ....
Read the Article
P and Pixels 
Points & Pixels
Severe Minibus Accident Documented for Crush Analysis... The Shining - in 3D... Leica BLK360 Imaging Laser Scanner and Autodesk ReCap 360 Pro App... Trimble Unveils SX10.... Scanning efficiency for complex structures... Acuity Technologies... New AEC Salary Report ...
Read the Article
Vicki Lukas 
The 3D Elevation Program and America's Infrastructure
Infrastructure--the physical framework of transportation, energy, communications, water supply, and other systems--and construction management--the overall planning, coordination, and control of a project from beginning to end--are critical to the Nation's prosperity ....
Read the Article
Brent Gelhar 
Roadway Inspection - Different Surfaces, Different Requirements
Since mobile mapping data collection systems first emerged several decades ago, there have been many advances in the technologies employed. The original visual inspection methods were automated at first with the advent of video camera technology. The most recent ....
Read the Article
John Stenmark, PS 
Indoor Mobile Mapping Takes Off at LAX
Airports are key components of the global transportation infrastructure. They are complex, expensive investments that require tight management. In order to achieve efficient operations and optimized return on investment, it's ....
Read the Article
Lies Steel 
Mobile Mapping Project in Belgium Combines 360° Images & LiDAR
In January 2017 IMAGE-V, the consortium formed by Teccon and Sweco Belgium, published the last data set of Flanders in 3D LIDAR and high resolution 360° images. This concluded the 2-year project for the Flemish authorities in which the entire road network of Flanders ....
Read the Article
Dr. David F. Maune 
Why ASPRS is Key to Geospatial Professional Development
I started my geospatial career as a First Lieutenant in Army topographic engineer units in the early 1960s when stereo photogrammetry was still performed with analog Multiplex projectors. It could take 8 hours to perform relative orientation for a single pair of stereo aerial photos ....
Read the Article
Scott Peterson, GISP 
Mobile LiDAR and Orbit GT - Providing the User with the Best Tools
Michael Baker International possesses the most comprehensive asset data collection capabilities in the industry. To help our clients maximize their resources Michael Baker has implemented a web-based solution on our BEAST environment (Baker Enterprise Architecture for Spatial ....
Read the Article
Lewis Graham 
Random Points: Out of Control?
I used part of my Thanksgiving holiday to catch up on some industry reading. What I find is rather disturbing. The offending information is primarily coming from overview articles in online sources regarding small unmanned aerial systems (sUAS) and their data collection ....
Read the Article


Share this page with your favorite social networks! 


LiDARmag Exclusive Online-only Article ticker
Featured LiDAR MAG Events
List Your Event Here
contact LiDAR


Teledyne Optech
Intros Polaris

press [at] lidarmag.com
Online Internet Content


White Papers

post a job
Reach our audience of Professional land surveyors and Geo-Technology professionals with your career ad. Feel free to contact us if you need additional information.

News Feeds

Subscribe to LiDAR MAG updates via friendfeed

Need Help? See this RSS Tutorial

©Spatial Media LLC - All rights reserved / Privacy Statement
Spatial Media LLC
905 W 7th St #331
Frederick MD 21701
301-695-1538 - fax